Skip to main content
Home
  • Solutions
    Clinical solutions
    Blended Solutions Cardiac Safety Solutions Clinical & Scientific Operations Decentralised Clinical Trials Early Clinical Laboratories Medical Imaging Site & Patient Solutions Strategic Solutions
    Consulting & Commercial
    Asset Development Consulting Commercial Positioning Language Services Outcome Measures Real World Intelligence Regulatory Affairs Symphony Health data
    meeting
    Case studies

    Reducing time to market, delivering on quality, providing deep therapeutic expertise and enhancing R&D ROI.

    Innovative research tools showcase
    Technologies

    Technology solutions from early phase through to post-marketing.

  • Sectors
    Sectors

    ICON provides its full range of clinical, consulting and commercial services across several industry sectors.

    Read more
    Biotech Government and Public Health Medical Device Pharmaceuticals
    Biotechnology services navigation panel
    Biotech

    Developing transformative therapies requires a flexible approach.

    Employee engagement program overview
    ICON and You

    Partners making a difference.

  • Therapeutics
    Therapeutics
    Cardiovascular Central Nervous System Endocrine & Metabolic Disorders Hepatology Infectious Diseases Internal Medicine & Immunology Oncology
    Cross-therapeutics
    Biosimilars Cell and Gene Therapies Medical Device Pediatrics Rare & Orphan Diseases Vaccines Women's Health
    Obesity 2025 insights image
    Obesity

    A focus on combination therapies requires appropriate obesity-specific trial designs, long-term follow-up studies and diverse patient recruitment.

    Biological research visual element
    Therapeutics insights

    ICON's therapeutic experts contribute regularly to industry publications and the creation of thought leadership content. Read more.

  • Insights
    Insights
    Digital Disruption Patient Centricity Regulatory Intelligence Therapeutics insights Transforming Trials Value Based Healthcare Blog Videos Webinar Channel
    banners
    From bottlenecks to breakthroughs

    Human-centred strategies for faster study starts

    More than monitoring whitepaper
    More than monitoring

    How modern monitoring paradigms impact CRA roles

    digital globe network with icons
    Meeting requirements for Joint Clinical Assessments

    A planning guide for health technology developers

  • News & Events
    News & Events

    ICON regularly contributes thought leadership to industry media publications and conferences, and has been recognised as one of the world’s leading Contract Research Organisations through a number of high-profile industry awards.

    Read more
    Press releases In the News Mediakit Awards Events Webinars Social media
    webinar
    When patients lead: Breaking barriers in ultra-rare disease drug development

    3 March 2026. Register today.

    brain
    Boosting clinical trial success in Alzheimer’s, Parkinson’s and other neurodegenerative diseases

    Watch the webinar.

  • About ICON
    About ICON
    Company history ICON at a glance ICON in Asia Pacific ICON in Latin America Leadership Quality
    ICON for
    Patients Volunteers Investigators Jobs & Careers Investors Suppliers
    Responsible business practice indicators
    Sustainability, charity, inclusion and belonging

    ICON Cares is our commitment to making a positive impact on our people, environment and our community.

    Modern reception area at Dublin office
    ICON at a glance

    Delivering successful outcomes across the clinical development lifecycle.

  • Careers
  • Investors
  • Contact
  • 日本語
  • 简体中文
  1. Home
  2. Insights
  3. Blog
  4. Scaling Up CAR-T Therapies Requires Overcoming Manufacturing, Regulatory and Distribution Challenges

Requirements for Scaling Up CAR-T Therapies

Page tools
Share Share
Facebook

Share on Facebook

Facebook

Share on X

Facebook

Share on Linkedin

Bluesky

Share on Bluesky

Overcoming Manufacturing, Regulatory and Distribution Challenges

 

Recent approvals of CAR-T immuno-oncology therapies present a market opportunity estimated to grow nearly 50 percent annually over the next decade, exceeding $8.5 billion globally by 2028 (1). Taking advantage means scaling up CAR-T production to industrial levels. This presents several highly technical and interrelated manufacturing, regulatory and distribution challenges.

Partnering with a clinical research organisation experienced in immuno-oncology, such as ICON, can provide the manufacturing and distribution, and regulatory expertise sponsors will need to succeed. Here, we outline some significant challenges of scaling up CAR-T, and potential solutions.

Manufacturing

Challenge: Viral vectors 

Selection and consistent production of safe and effective viral vectors is an essential first step for successful CAR-T manufacture. As the mechanism by which genes are inserted into T cells extracted from patients, viral vectors not only need to be effective and efficient, but also need to be safe over the long term. Industrial manufacture will also require vectors that can be reliably produced in much larger volume than for research and clinical trials.

Because it is a new field of therapeutic manufacture, many production and quality improvement processes required for large-scale CAR-T production will have to be developed. These include production processes capable of generating consistent quality improvement processes for validating vector batches and end products delivered to patients, and long-term outcomes reporting.

Solution: Developing or contracting for expertise in testing and developing viral vectors, and developing process and quality controls to ensure consistent quality using novel bioreactor culture systems will be critical for success.

Challenge: Cell collection

Ensuring consistent, predictable cell collection across diverse clinical therapy sites. Because the starting material for CAR-T therapy is T cells harvested from the individual to be treated, variability is unavoidable. Such variability may be compounded by variations in cell collection, a manual step dependent on individual operator skills, and institution-level procedures and processes.

Reducing the risk this variability may pose to product quality, yield and efficacy requires standardisation of blood collection, apheresis and cell preparation and storage processes based on existing institutional best practices. Developing a universally applicable collection template from the experiences and best practices of individual institutions will require significant development and validation.

Solution: Expertise in clinical process development, validation and improvement are needed to establish uniform cell collection processes that can minimise starting material variability.

Challenge: Ensuring consistent quality and improving quality across diverse therapeutic sites with variable starting materials

In addition to validated standardised cell collection processes, rigorous training and ongoing oversite and quality testing will be required to ensure such processes are properly implemented, adhered to and improved over time; and that the quality and efficacy of end products is maintained.

Solution: Expertise developing and harmonising quality assurance standards and practices across global markets, and advanced reference lab capabilities will be required.

Regulatory compliance

Challenge: Lack of regulatory standards and harmonisation

As a new technology, regulatory standards for manufacturing CAR-T therapies are at best a work in progress and subject to considerable subjective interpretation by regulators. As most CAR-T trials, to date, have been conducted in North America, the problem may be particularly pronounced in the European Union and Asia-Pacific countries, where regulators have little experience considering the unique challenges CAR-T presents for assessing the adequacy of manufacturing processes.

Prominent among these is the variability of starting materials noted above, which is likely to influence variation in final products far more than differences in manufacturing processes. Therefore, manufacturing assessments will have to be based more on well-defined critical process parameters at each step.

The case for approval, based on such standards, will have to be made on a country-by-country basis, and will require educating and working with regulators.

Solution: Essential capabilities include expertise in identifying, designing and validating critical process controls and parameters, and experience working early in product development cycles with regulators in Europe and Asia.

Challenge: Complying with evolving European and Asian standards for use of genetically modified products.

The European Medicines Agency is currently revising its guidelines on the use of genetically modified cells in medicinal products to specifically include CAR-T products with the goal of harmonising regulatory practices throughout Europe.

However, the outcome remains uncertain, and sponsors should prepare by maintaining inspection documentation of reagent origins, compositions, traceabilities, and certifications that are in use.

In addition, the Alliance for Regenerative Medicine has urged regulators to harmonise genetically modified organism standards, which vary by country and create a significant burden for conducting gene therapy trials and obtaining regulatory approval. Asian standards are similarly in development.

Solution: Working toward international harmonisation efforts is critical to create a favourable long-term approval and market environment for CAR-T and other gene therapies.

Distribution

Challenge: Ensuring the identity, chain of custody and proper handling of cell source material.

The individualised nature of CAR-T therapy and the fragility of cells harvested from patients create unique distribution challenges. Ensuring samples are packaged, kept at proper temperatures and quickly shipped is just the beginning.

The identity of the patient donor of each sample must be verified and documented at every step – from collection to shipping to the manufacturing facility – throughout the cell genetic altering and expansion process. The samples can then be shipped back to the treatment facility and infused into the patient.

Managing distribution within the shelf life of unprocessed materials and processed products in the face of uncertainties of shipping schedules, patient availability, and manufacturing capacity scheduling on a global scale will be necessary for successfully delivering CAR-T therapy on an industrial scale.

Solution: Expertise managing biomaterial shipping logistics and large-scale sample processing, and workflow development and management across multiple sites will be essential.

Conclusion

Scaling up CAR-T therapy from an institutional to a commercial scale will require identifying and addressing multiple novel manufacturing, regulatory and distribution challenges. Significant experience and expertise in all three areas will be required.

As a leader in immuno-oncology, ICON has conducted approximately 100 clinical trials encompassing immune system-enhancing technologies, and more than 350 total oncology trials ranging from early research to post-market surveillance involving about 13,000 patients. ICON has the clinical and process engineering skills essential for developing, manufacturing and distributing the next generation of immuno-therapies. 

 

(1) Abhijit, R. Global CAR T Cell Therapy Market to Reach US$ 8.5 Billion by 2028.

(2)Aabhijit, R. Global CAR T Cell Therapy Market, By Targeted Antigen. Coherent Market Insights, Feb 2017. 

Oncology insights

ICON's Oncology experts provide analysis including whitepapers, blogs and contributions to media and industry conversations relating to all aspects of oncology in clinical trials.

Read more
In this section
In this section
  • Digital Disruption
    • Clinical strategies to optimise SaMD for treating mental health
    • Digital Disruption: Surveying the industry's evolving landscape
    • AI and clinical trials
      • Impact of AI on Outcomes Based Contracting
      • Using AI for site ID and selection
      • Applying AI to manage the risks and costs of postmarketing requirements
      • Integrating AI into Clinical Research: How AI is Enhancing Clinical Development
    • Clinical trial data anonymisation and data sharing
    • Clinical Trial Tokenisation
    • Closing the evidence gap: The value of digital health technologies in supporting drug reimbursement decisions
    • mHealth wearables
      • Cybersecurity
      • Digital Endpoints
    • Personalising Digital Health
    • Real World Data
      • Harnessing technology to maximise Real World Evidence value
      • Meeting Evidentiary Needs with EHRs
      • Post-Market Surveillance for Medical Devices
    • The triad of trust: Navigating real-world healthcare data integration
    • Decoding AI in software as a medical device (SaMD)
    • Software as a medical device (SaMD)
      • Developing AI in SaMD
  • Patient Centricity
    • Accelerating clinical development through DHTs
    • Agile Clinical Monitoring
    • Capturing the voice of the patient in clinical trials
    • Charting the Managed Access Program Landscape
    • Representation and inclusion in clinical trials
      • Diversity and inclusion in clinical trials whitepaper
    • Exploring the patient perspective from different angles
    • Patient safety and pharmacovigilance
      • A guide to safety data migrations
      • Taking safety reporting to the next level with automation
      • Outsourced Pharmacovigilance Affiliate Solution
      • The evolution of the Pharmacovigilance System Master File: Benefits, challenges, and opportunities
      • Sponsor and CRO pharmacovigilance and safety alliances
      • Understanding the Periodic Benefit-Risk Evaluation Report
    • Patient voice survey
    • Patient Voice Survey - Decentralised and Hybrid Trials
    • Reimagining Patient-Centricity with the Internet of Medical Things (IoMT)
    • Using longitudinal qualitative research to capture the patient voice
    • Prioritising patient-centred research for regulatory approval
  • Regulatory Intelligence
    • Accelerating access
    • Meeting requirements for Joint Clinical Assessments
    • Navigating the regulatory landscape in the US and Japan:
    • Preparing for ICH GCP E6(R3) implementation
    • An innovative approach to rare disease clinical development
    • EU Clinical Trials Regulation
      • EMA guideline on computerised systems and electronic data in clinical trials
      • EU CTR Whitepaper
    • Using innovative tools and lean writing processes to accelerate regulatory document writing
    • Current overview of data sharing within clinical trial transparency
    • Global Agency Meetings: A collaborative approach to drug development
    • Keeping the end in mind: key considerations for creating plain language summaries
    • Navigating orphan drug development from early phase to marketing authorisation
    • Procedural and regulatory know-how for China biotechs in the EU
    • RACE for Children Act
    • Early engagement and regulatory considerations for biotech
    • Regulatory Intelligence Newsletter
    • Requirements & strategy considerations within clinical trial transparency
    • Spotlight on regulatory reforms in China
    • Demystifying EU CTR, MDR and IVDR
    • Transfer of marketing authorisation
    • Exploring FDA guidance for modern Data Monitoring Committees
    • Streamlining dossier preparation
  • Therapeutics insights
    • Endocrine and Metabolic Disorders
    • Cardiovascular
      • Mitigating the impact of COVID-19 on cardiovascular trials
    • Cell and Gene Therapies
      • Approaching the CAR T-cell therapy horizon
      • Cell and Gene ebook
      • Long-term follow-up studies of cell and gene therapies
      • Mainstreaming Cell & Gene Therapies
    • Central Nervous System
      • A mind for digital therapeutics
      • Challenges and opportunities in traumatic brain injury clinical trials
      • Challenges and opportunities in Parkinson’s Disease clinical trials
      • Early, precise and efficient; the methods and technologies advancing Alzheimer’s and Parkinson’s R&D
      • Key Considerations in Chronic Pain Clinical Trials
      • ICON survey report: CNS therapeutic development
    • Glycomics
    • Infectious Diseases
      • Antimicrobial Resistance
      • Considerations for strengthening vaccine development
      • COVID-19 vaccine trials
      • COVID-19 vaccines: Post-authorisation safety surveillance
      • HIV
      • The value of dynamic transmission models
    • NASH
      • The voice of NASH investigators
    • Obesity
      • Addressing obesity's impact across the disease spectrum
      • Trends and challenges in obesity research and clinical trials
      • Obesity and beyond: embracing multi-indication potential during clinical development
      • Survey report: How today’s obesity developers are navigating a multi-indication landscape
    • Oncology
      • ICON survey report: Innovation in Oncology
      • De-risking clinical development of precision medicines in oncology
      • Advances in imaging biomarkers: Estimating drug efficacy with tumour growth rate modelling
      • The future of oncology biosimilars
    • Paediatrics
      • Paediatric Risk Assessment Map
    • Respiratory
    • Rare and orphan diseases
      • Advanced therapies for rare diseases
      • Cross-border enrollment of rare disease patients
      • Crossing the finish line: Why effective participation support strategy is critical to trial efficiency and success in rare diseases
      • Diversity, equity and inclusion in rare disease clinical trials
      • Identify and mitigate risks to rare disease clinical programmes
      • Leveraging historical data for use in rare disease trials
      • Natural history studies to improve drug development in rare diseases
      • Patient Centricity in Orphan Drug Development
      • The key to remarkable rare disease registries
      • Therapeutic spotlight: Precision medicine considerations in rare diseases
  • Transforming Trials
    • Accelerating biotech innovation from discovery to commercialisation
    • Demystifying the Systematic Literature Reviews
    • Ensuring the validity of clinical outcomes assessment (COA) data: The value of rater training
    • From bottlenecks to breakthroughs
    • Linguistic validation of Clinical Outcomes Assessments
    • More than monitoring
    • Optimising biotech funding
    • Adaptive clinical trials
      • Adaptive Design: The Faster Path to Market
    • Best practices to increase engagement with medical and scientific poster content
    • Decentralised clinical trials
      • Biopharma perspective: the promise of decentralised models and diversity in clinical trials
      • Decentralised and Hybrid clinical trials
      • Practical considerations in transitioning to hybrid or decentralised clinical trials
      • Navigating the regulatory labyrinth of technology in decentralised clinical trials
    • eCOA implementation
    • Blended solutions insights
      • Clinical trials in Japan: An enterprise growth and management strategy
      • How investments in supply of CRAs is better than competing with the demand for CRAs
      • The evolution of FSP: not just for large pharma
      • Embracing a blended operating model
      • Observations in outsourcing: Survey results show a blended future
    • Implications of COVID-19 on statistical design and analyses of clinical studies
    • Improving pharma R&D efficiency
    • Increasing Complexity and Declining ROI in Drug Development
    • Innovation in Clinical Trial Methodologies
    • Partnership insights
      • Exploring partnership culture and its impact on outsourcing and operational strategy
    • Risk Based Quality Management
    • Transforming the R&D Model to Sustain Growth
  • Value Based Healthcare
    • Strategies for commercialising oncology treatments for young adults
    • US payers and PROs
    • Accelerated early clinical manufacturing
    • Cardiovascular Medical Devices
    • CMS Part D Price Negotiations: Is your drug on the list?
    • COVID-19 navigating global market access
    • Ensuring scientific rigor in external control arms
    • Evidence Synthesis: A solution to sparse evidence, heterogeneous studies, and disconnected networks
    • Health technology assessment
    • Perspectives from US payers
    • ICER’s impact on payer decision making
    • Making Sense of the Biosimilars Market
    • Medical communications in early phase product development
    • Navigating the Challenges and Opportunities of Value Based Healthcare
    • Payer Reliance on ICER and Perceptions on Value Based Pricing
    • Payers Perspectives on Digital Therapeutics
    • Precision Medicine
    • RWE Generation Cross Sectional Studies and Medical Chart Review
    • Survey results: How to engage healthcare decision-makers
    • The affordability hurdle for gene therapies
    • The Role of ICER as an HTA Organisation
    • Integrating openness and precision for competitive advantage
  • Blog
  • Videos
  • Webinar Channel

Connect with us

  • Contact us
  • Submit proposal request
  • Update Email Preferences
  • Global office locator
  • ICON on social media
Blog

Challenges in Manufacturing and Distribution of CAR-T Therapies

Webpage

Immuno-Oncology

Site Branding
    ICON plc
  • Contact
  • About ICON
  • Results & Reports
For Clients
  • Therapeutics
  • Solutions
  • Insights
  • Technologies
  • Content preferences
  • Office locations
ICON for
  • Patients
  • Volunteers
  • Investigators
  • Jobs & Careers
  • Investors
  • Suppliers
News & Events
  • Press releases
  • Mediakit
  • Events
  • Webinars
Socials
  • Linkedin
  • Facebook
  • Instagram
  • Youtube

Legal Footer

  • © 2026 ICON plc
  • Disclaimer
  • Privacy & Data
  • Cookies
How can we help?
  • All
  • Website
Popular search terms:
  • Biotech
  • Cell and Gene Therapies
  • Consulting
  • Early Clinical
  • Medical Device
  • Oncology
  • Rare & Orphan Diseases
  • Real World Evidence
  • Site & Patient Recruitment
  • Strategic Solutions
  • Regulatory Intelligence