Skip to main content
Home
  • Solutions
    Clinical solutions
    Blended Solutions Cardiac Safety Solutions Clinical & Scientific Operations Decentralised Clinical Trials Early Clinical Laboratories Medical Imaging Site & Patient Solutions Strategic Solutions
    Consulting & Commercial
    Asset Development Consulting Commercial Positioning Language Services Outcome Measures Real World Intelligence Regulatory Affairs Symphony Health data
    meeting
    Case studies

    Reducing time to market, delivering on quality, providing deep therapeutic expertise and enhancing R&D ROI.

    Innovative research tools showcase
    Technologies

    Technology solutions from early phase through to post-marketing.

  • Sectors
    Sectors

    ICON provides its full range of clinical, consulting and commercial services across several industry sectors.

    Read more
    Biotech Government and Public Health Medical Device Pharmaceuticals
    Biotechnology services navigation panel
    Biotech

    Developing transformative therapies requires a flexible approach.

    Employee engagement program overview
    ICON and You

    Partners making a difference.

  • Therapeutics
    Therapeutics
    Cardiovascular Central Nervous System Endocrine & Metabolic Disorders Hepatology Infectious Diseases Internal Medicine & Immunology Oncology
    Cross-therapeutics
    Biosimilars Cell and Gene Therapies Medical Device Pediatrics Rare & Orphan Diseases Vaccines Women's Health
    Obesity 2025 insights image
    Obesity

    A focus on combination therapies requires appropriate obesity-specific trial designs, long-term follow-up studies and diverse patient recruitment.

    Biological research visual element
    Therapeutics insights

    ICON's therapeutic experts contribute regularly to industry publications and the creation of thought leadership content. Read more.

  • Insights
    Insights
    Digital Disruption Patient Centricity Regulatory Intelligence Therapeutics insights Transforming Trials Value Based Healthcare Blog Videos Webinar Channel
    banners
    From bottlenecks to breakthroughs

    Human-centred strategies for faster study starts

    More than monitoring whitepaper
    More than monitoring

    How modern monitoring paradigms impact CRA roles

    digital globe network with icons
    Meeting requirements for Joint Clinical Assessments

    A planning guide for health technology developers

  • News & Events
    News & Events

    ICON regularly contributes thought leadership to industry media publications and conferences, and has been recognised as one of the world’s leading Contract Research Organisations through a number of high-profile industry awards.

    Read more
    Press releases In the News Mediakit Awards Events Webinars Social media
    webinar
    When patients lead: Breaking barriers in ultra-rare disease drug development

    3 March 2026. Register today.

    brain
    Boosting clinical trial success in Alzheimer’s, Parkinson’s and other neurodegenerative diseases

    Watch the webinar.

  • About ICON
    About ICON
    Company history ICON at a glance ICON in Asia Pacific ICON in Latin America Leadership Quality
    ICON for
    Patients Volunteers Investigators Jobs & Careers Investors Suppliers
    Responsible business practice indicators
    Sustainability, charity, inclusion and belonging

    ICON Cares is our commitment to making a positive impact on our people, environment and our community.

    Modern reception area at Dublin office
    ICON at a glance

    Delivering successful outcomes across the clinical development lifecycle.

  • Careers
  • Investors
  • Contact
  • 日本語
  • 简体中文
  1. Home
  2. Insights
  3. Blog
  4. Overcoming limitations in multiple myeloma trial designs

Overcoming limitations in multiple myeloma trial designs

Page tools
Share Share
Facebook

Share on Facebook

Facebook

Share on X

Facebook

Share on Linkedin

Bluesky

Share on Bluesky

The International Myeloma Working Group (IMWG) has drastically improved the diagnostic criteria and monitoring protocols for multiple myeloma (MM) trials. In fact, the discovery of novel biomarkers has made MM diagnosis and monitoring much easier and more efficient. The new protocols are complex, however, and they must be fully understood to maintain accuracy and efficiency in the diagnosis and monitoring of MM.

We talked to Marc Golightly, Ph.D., Professor of Pathology at Stony Brook University and Consultant at ICON Laboratory Services, for his take on the IMWG’s recent developments in MM care, as well as the challenges that sponsors face while developing MM protocols.

Dr. Golightly has been integrally involved in laboratory diagnosis of multiple myeloma at Stony Brook for more than 30 years. He is the director of the Medical Center’s Clinical Immunology Laboratory and Clinical Flow Cytometry Laboratory, and the University’s Research Flow Cytometry Core Facility. He has been a consultant with ICON for MM clinical trials and flow cytometry since 2000. Dr. Golightly recently co-hosted a webinar about laboratory considerations in multiple myeloma trials, which you can access here.

1. How has the IMWG recently evolved the diagnosis and monitoring of MM?

Recently, the IMWG added new criteria for diagnosing MM. These criteria include the detection of validated biomarkers (myeloma-defining events) prior to the onset of established CRAB features (high calcium levels, renal dysfunction, anemia, and destructive bone lesions), which indicate end organ damage.

The new biomarkers include: 1) a serum involved/uninvolved free light chain ratio of 100 or greater, as long as the involved light chain is present at a concentration of at least 100mg/L; and 2) more than one focal lesion on an MRI that is at least 5mm in size. These biomarkers, in fact, have been associated with the development of severe CRAB features. By examining these new biomarkers, a MM diagnosis can now be made before the appearance of end organ damage.

Additionally, the International Response Criteria for MM have been refined by adopting flow cytometric minimal residual disease (MRD) analysis (>4 color) and by analyzing one million cells. Moreover, the flow cytometry community has made efforts to refine these criteria even further by standardizing this analysis using 8 colors and examining 2-3 million cells.

2. How may these changes affect a trial’s enrollment process and subsequent monitoring for treatment response?

With knowledge of these new biomarkers, MM diagnoses can be made much earlier in a patient’s disease course, meaning patients can enroll in a trial before the onset of end-stage damage. Data has shown that early treatment can extend survival among high-risk smoldering MM patients.

Also, the inclusion of flow cytometric MRD analysis will greatly fine-tune the evaluation of these patients’ response to treatment.  

3. For MM trials, monitoring for disease progression and drug response can be complicated by a number of confounding factors and sometimes discrepant test results. What risks should sponsors be cognizant of?

By far, the largest complication in disease monitoring is the scenario where monoclonal proteins, most often IgAs, are present in the beta region in serum protein electrophoresis (SPE). In this situation, the antibody signal can be obscured by the underlying beta peak.

This issue does not normally arise at first presentation, since the antibody signal peaks are usually much larger than the beta peaks. However, as the antibody peaks diminish due to treatment, they disappear into the beta peak, making them difficult to discern, and in turn, the SPE becomes inaccurate and insensitive.

To resolve this issue, 92% of cases require immunofixation electrophoresis (IFE) and IgA quantitation via nephelometry to monitor the response to treatment. The IMWG has recognized this problem.

In addition, treatments themselves can interfere with the assessment of a patient’s response. Certain drugs, such as Elotuzumab and Daratumumab, have been shown to obscure the patient response to treatment, as their presence can appear in the SPE and IFE as monoclonal peaks themselves.

The sponsor should choose a trial laboratory that has experience working with these confounders and knows how to accurately distinguish between a patient’s response to treatment and other interfering signals.

4. How can smart bioanalytical strategies control these risks and protect the validity and accuracy of a trial?

Choosing a clinical trial laboratory that is aware of these confounding issues and has experience working with them could be a big step towards eliminating these issues. In addition, these confounders can be minimized by teaming up with an experienced myeloma clinical trial lab at the onset of a trial and seeking their input for study design.

Oncology insights

ICON's Oncology experts provide analysis including whitepapers, blogs and contributions to media and industry conversations relating to all aspects of oncology in clinical trials.

Read more
In this section
In this section
  • Digital Disruption
    • Clinical strategies to optimise SaMD for treating mental health
    • Digital Disruption: Surveying the industry's evolving landscape
    • AI and clinical trials
      • Impact of AI on Outcomes Based Contracting
      • Using AI for site ID and selection
      • Applying AI to manage the risks and costs of postmarketing requirements
      • Integrating AI into Clinical Research: How AI is Enhancing Clinical Development
    • Clinical trial data anonymisation and data sharing
    • Clinical Trial Tokenisation
    • Closing the evidence gap: The value of digital health technologies in supporting drug reimbursement decisions
    • mHealth wearables
      • Cybersecurity
      • Digital Endpoints
    • Personalising Digital Health
    • Real World Data
      • Harnessing technology to maximise Real World Evidence value
      • Meeting Evidentiary Needs with EHRs
      • Post-Market Surveillance for Medical Devices
    • The triad of trust: Navigating real-world healthcare data integration
    • Decoding AI in software as a medical device (SaMD)
    • Software as a medical device (SaMD)
      • Developing AI in SaMD
  • Patient Centricity
    • Accelerating clinical development through DHTs
    • Agile Clinical Monitoring
    • Capturing the voice of the patient in clinical trials
    • Charting the Managed Access Program Landscape
    • Representation and inclusion in clinical trials
      • Diversity and inclusion in clinical trials whitepaper
    • Exploring the patient perspective from different angles
    • Patient safety and pharmacovigilance
      • A guide to safety data migrations
      • Taking safety reporting to the next level with automation
      • Outsourced Pharmacovigilance Affiliate Solution
      • The evolution of the Pharmacovigilance System Master File: Benefits, challenges, and opportunities
      • Sponsor and CRO pharmacovigilance and safety alliances
      • Understanding the Periodic Benefit-Risk Evaluation Report
    • Patient voice survey
    • Patient Voice Survey - Decentralised and Hybrid Trials
    • Reimagining Patient-Centricity with the Internet of Medical Things (IoMT)
    • Using longitudinal qualitative research to capture the patient voice
    • Prioritising patient-centred research for regulatory approval
  • Regulatory Intelligence
    • Accelerating access
    • Meeting requirements for Joint Clinical Assessments
    • Navigating the regulatory landscape in the US and Japan:
    • Preparing for ICH GCP E6(R3) implementation
    • An innovative approach to rare disease clinical development
    • EU Clinical Trials Regulation
      • EMA guideline on computerised systems and electronic data in clinical trials
      • EU CTR Whitepaper
    • Using innovative tools and lean writing processes to accelerate regulatory document writing
    • Current overview of data sharing within clinical trial transparency
    • Global Agency Meetings: A collaborative approach to drug development
    • Keeping the end in mind: key considerations for creating plain language summaries
    • Navigating orphan drug development from early phase to marketing authorisation
    • Procedural and regulatory know-how for China biotechs in the EU
    • RACE for Children Act
    • Early engagement and regulatory considerations for biotech
    • Regulatory Intelligence Newsletter
    • Requirements & strategy considerations within clinical trial transparency
    • Spotlight on regulatory reforms in China
    • Demystifying EU CTR, MDR and IVDR
    • Transfer of marketing authorisation
    • Exploring FDA guidance for modern Data Monitoring Committees
    • Streamlining dossier preparation
  • Therapeutics insights
    • Endocrine and Metabolic Disorders
    • Cardiovascular
      • Mitigating the impact of COVID-19 on cardiovascular trials
    • Cell and Gene Therapies
      • Approaching the CAR T-cell therapy horizon
      • Cell and Gene ebook
      • Long-term follow-up studies of cell and gene therapies
      • Mainstreaming Cell & Gene Therapies
    • Central Nervous System
      • A mind for digital therapeutics
      • Challenges and opportunities in traumatic brain injury clinical trials
      • Challenges and opportunities in Parkinson’s Disease clinical trials
      • Early, precise and efficient; the methods and technologies advancing Alzheimer’s and Parkinson’s R&D
      • Key Considerations in Chronic Pain Clinical Trials
      • ICON survey report: CNS therapeutic development
    • Glycomics
    • Infectious Diseases
      • Antimicrobial Resistance
      • Considerations for strengthening vaccine development
      • COVID-19 vaccine trials
      • COVID-19 vaccines: Post-authorisation safety surveillance
      • HIV
      • The value of dynamic transmission models
    • NASH
      • The voice of NASH investigators
    • Obesity
      • Addressing obesity's impact across the disease spectrum
      • Trends and challenges in obesity research and clinical trials
      • Obesity and beyond: embracing multi-indication potential during clinical development
      • Survey report: How today’s obesity developers are navigating a multi-indication landscape
    • Oncology
      • ICON survey report: Innovation in Oncology
      • De-risking clinical development of precision medicines in oncology
      • Advances in imaging biomarkers: Estimating drug efficacy with tumour growth rate modelling
      • The future of oncology biosimilars
    • Paediatrics
      • Paediatric Risk Assessment Map
    • Respiratory
    • Rare and orphan diseases
      • Advanced therapies for rare diseases
      • Cross-border enrollment of rare disease patients
      • Crossing the finish line: Why effective participation support strategy is critical to trial efficiency and success in rare diseases
      • Diversity, equity and inclusion in rare disease clinical trials
      • Identify and mitigate risks to rare disease clinical programmes
      • Leveraging historical data for use in rare disease trials
      • Natural history studies to improve drug development in rare diseases
      • Patient Centricity in Orphan Drug Development
      • The key to remarkable rare disease registries
      • Therapeutic spotlight: Precision medicine considerations in rare diseases
  • Transforming Trials
    • Accelerating biotech innovation from discovery to commercialisation
    • Demystifying the Systematic Literature Reviews
    • Ensuring the validity of clinical outcomes assessment (COA) data: The value of rater training
    • From bottlenecks to breakthroughs
    • Linguistic validation of Clinical Outcomes Assessments
    • More than monitoring
    • Optimising biotech funding
    • Adaptive clinical trials
      • Adaptive Design: The Faster Path to Market
    • Best practices to increase engagement with medical and scientific poster content
    • Decentralised clinical trials
      • Biopharma perspective: the promise of decentralised models and diversity in clinical trials
      • Decentralised and Hybrid clinical trials
      • Practical considerations in transitioning to hybrid or decentralised clinical trials
      • Navigating the regulatory labyrinth of technology in decentralised clinical trials
    • eCOA implementation
    • Blended solutions insights
      • Clinical trials in Japan: An enterprise growth and management strategy
      • How investments in supply of CRAs is better than competing with the demand for CRAs
      • The evolution of FSP: not just for large pharma
      • Embracing a blended operating model
      • Observations in outsourcing: Survey results show a blended future
    • Implications of COVID-19 on statistical design and analyses of clinical studies
    • Improving pharma R&D efficiency
    • Increasing Complexity and Declining ROI in Drug Development
    • Innovation in Clinical Trial Methodologies
    • Partnership insights
      • Exploring partnership culture and its impact on outsourcing and operational strategy
    • Risk Based Quality Management
    • Transforming the R&D Model to Sustain Growth
  • Value Based Healthcare
    • Strategies for commercialising oncology treatments for young adults
    • US payers and PROs
    • Accelerated early clinical manufacturing
    • Cardiovascular Medical Devices
    • CMS Part D Price Negotiations: Is your drug on the list?
    • COVID-19 navigating global market access
    • Ensuring scientific rigor in external control arms
    • Evidence Synthesis: A solution to sparse evidence, heterogeneous studies, and disconnected networks
    • Health technology assessment
    • Perspectives from US payers
    • ICER’s impact on payer decision making
    • Making Sense of the Biosimilars Market
    • Medical communications in early phase product development
    • Navigating the Challenges and Opportunities of Value Based Healthcare
    • Payer Reliance on ICER and Perceptions on Value Based Pricing
    • Payers Perspectives on Digital Therapeutics
    • Precision Medicine
    • RWE Generation Cross Sectional Studies and Medical Chart Review
    • Survey results: How to engage healthcare decision-makers
    • The affordability hurdle for gene therapies
    • The Role of ICER as an HTA Organisation
    • Integrating openness and precision for competitive advantage
  • Blog
  • Videos
  • Webinar Channel

Connect with us

  • Contact us
  • Submit proposal request
  • Update Email Preferences
  • Global office locator
  • ICON on social media

Related information:

Therapeutics

Immuno-Oncology

Site Branding
    ICON plc
  • Contact
  • About ICON
  • Results & Reports
For Clients
  • Therapeutics
  • Solutions
  • Insights
  • Technologies
  • Content preferences
  • Office locations
ICON for
  • Patients
  • Volunteers
  • Investigators
  • Jobs & Careers
  • Investors
  • Suppliers
News & Events
  • Press releases
  • Mediakit
  • Events
  • Webinars
Socials
  • Linkedin
  • Facebook
  • Instagram
  • Youtube

Legal Footer

  • © 2026 ICON plc
  • Disclaimer
  • Privacy & Data
  • Cookies
How can we help?
  • All
  • Website
Popular search terms:
  • Biotech
  • Cell and Gene Therapies
  • Consulting
  • Early Clinical
  • Medical Device
  • Oncology
  • Rare & Orphan Diseases
  • Real World Evidence
  • Site & Patient Recruitment
  • Strategic Solutions
  • Regulatory Intelligence